Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Obesity (Silver Spring) ; 32(2): 262-272, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37927202

RESUMEN

OBJECTIVE: This study aimed to determine the effects of different energy loads on the gut microbiota composition and the rates of energy and nutrient excretion via feces and urine. METHODS: A randomized crossover dietary intervention study was conducted with three dietary conditions: overfeeding (OF), control (CON), and underfeeding (UF). Ten healthy men were subjected to each condition for 8 days (4 days and 3 nights in nonlaboratory and laboratory settings each). The effects of dietary conditions on energy excretion rates via feces and urine were assessed using a bomb calorimeter. RESULTS: Short-term energy loads dynamically altered the gut microbiota at the α-diversity (Shannon index), phylum, and genus levels (p < 0.05). Energy excretion rates via urine and urine plus feces decreased under OF more than under CON (urine -0.7%; p < 0.001, urine plus feces -1.9%; p = 0.049) and UF (urine -1.0%; p < 0.001, urine plus feces -2.1%; p = 0.031). However, energy excretion rates via feces did not differ between conditions. CONCLUSIONS: Although short-term overfeeding dynamically altered the gut microbiota composition, the energy excretion rate via feces was unaffected. Energy excretion rates via urine and urine plus feces were lower under OF than under CON and UF conditions.


Asunto(s)
Microbioma Gastrointestinal , Masculino , Humanos , Estudios Cruzados , Dieta , Heces , Nutrientes , ARN Ribosómico 16S
2.
Geriatr Gerontol Int ; 24(1): 53-60, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38098315

RESUMEN

AIM: The gut microbiota has emerged as a new intervention target for sarcopenia. Prior studies in humans have focused on the association between gut microbiota and skeletal muscle quantity, while the evidence on muscle function and quality is lacking. This study aimed to identify gut microbiota genera associated with skeletal muscle function, quantity, and quality in a general population of Japanese adults. METHODS: This cross-sectional study included 164 participants aged 35-80 years, women and men recruited from urban areas of Japan. Fecal samples were collected and analyzed using 16S rRNA gene amplicon sequencing. Skeletal muscle function was measured using handgrip strength and leg extension power (LEP), while skeletal muscle mass was estimated using bioelectrical impedance analysis. Phase angle was used as a measure of skeletal muscle quality. Multivariate linear regression analysis stratified by age group was used to examine the association between the dominant genera of the gut microbiota and skeletal muscle variables. RESULTS: A significant association was found between Bacteroides and Prevotella 9 with LEP only in the ≥60 years group. When both Bacteroides and Prevotella 9 were included in the same regression model, only Bacteroides remained consistently and significantly associated with LEP. No significant associations were observed between skeletal muscle mass, handgrip strength, and phase angle and major gut microbiota genera. CONCLUSIONS: In this study, we observed a significant positive association between Bacteroides and leg muscle function in older adults. Further studies are required to elucidate the underlying mechanisms linking Bacteroides to lower-extremity muscle function. Geriatr Gerontol Int 2024; 24: 53-60.


Asunto(s)
Microbioma Gastrointestinal , Masculino , Humanos , Femenino , Anciano , Estudios Transversales , Japón , Microbioma Gastrointestinal/fisiología , Fuerza de la Mano , ARN Ribosómico 16S , Músculo Esquelético/fisiología
3.
Front Physiol ; 14: 1173636, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37664431

RESUMEN

The interaction between the gut and brain is a great puzzle since it is mediated by very complex mechanisms. Therefore, the possible interactions of the brain-exercise-intestine-microbiome axis were investigated in a control (C, N = 6) and voluntarily exercised (VE, N = 8) middle-aged rats. The endurance capacity was assessed by VO2max on the treadmill, spatial memory by the Morris maze test, gastrointestinal motility by EMG, the microbiome by 16S RNA gene amplicon sequencing, caveolae by electron microscopy, and biochemical assays were used to measure protein levels and production of reactive oxygen species (ROS). Eight weeks of voluntary running increased VO2max, and spatial memory was assessed by the Morris maze test but did not significantly change the motility of the gastrointestinal tract or production of ROS in the intestine. The protein kinase B (Akt) and endothelial nitric oxide synthase (eNOS) protein levels significantly increased in the intestine, while peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), mitochondrial transcription factor A (TFAM), nuclear respiratory factor 1 (NFR1), SIRT1, SIRT3, nicotinamide phosphoribosyl transferase (NAMPT), and nuclear factor κB (NF-κB) did not change. On the other hand, voluntary exercise increased the number of caveolae in the smooth muscles of the intestine and relative abundance of Bifidobacteria in the microbiome, which correlated with the Akt levels in the intestine. Voluntary exercise has systemic effects and the relationship between intestinal Akt and the microbiome of the gastrointestinal tract could be an important adaptive response.

4.
Physiol Genomics ; 55(12): 647-653, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37694281

RESUMEN

The aim of the present study was to investigate changes in the gut microbiome both during and after consumption of malted rice amazake (MR-Amazake), a fermented food from Japan, in-home healthcare patients with disabilities, including patients with severe motor and intellectual disabilities. We monitored 12 patients who consumed MR-Amazake for 6 wk and investigated them before and after the intervention as well as 6 wk after the end of intake to compare their physical condition, diet, type of their medication, constipation assessment scale, and analysis of their comprehensive fecal microbiome using 16S rRNA sequencing. Their constipation symptoms were significantly alleviated, and principal coordinate analysis revealed that 30% of patients showed significant changes in the gut microbiome after MR-Amazake ingestion. Furthermore, Bifidobacterium was strongly associated with these changes. These changes were observed only during MR-Amazake intake; the original gut microbiome was restored when MR-Amazake intake was discontinued. These results suggest that 6 wk is a reasonable period of time for MR-Amazake to change the human gut microbiome and that continuous consumption of MR-Amazake is required to sustain such changes.NEW & NOTEWORTHY The consumption of malted rice amazake (MR-Amazake) showed significant changes in the gut microbiome according to principal coordinate analysis in some home healthcare patients with disabilities, including those with severe motor and intellectual disabilities. After discontinuation of intake, the gut microbiome returned to its original state. This is the first pilot study to examine both the changes in the gut microbiome and their sustainability after MR-Amazake intake.


Asunto(s)
Personas con Discapacidad , Microbioma Gastrointestinal , Discapacidad Intelectual , Oryza , Humanos , Microbioma Gastrointestinal/genética , Oryza/genética , Proyectos Piloto , ARN Ribosómico 16S/genética , Heces/microbiología , Estreñimiento/microbiología , Atención a la Salud
5.
Microorganisms ; 11(8)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37630452

RESUMEN

A cross-sectional study involving 224 healthy Japanese adult females explored the relationship between ramen intake, gut microbiota diversity, and blood biochemistry. Using a stepwise regression model, ramen intake was inversely associated with gut microbiome alpha diversity after adjusting for related factors, including diets, Age, BMI, and stool habits (ß = -0.018; r = -0.15 for Shannon index). The intake group of ramen was inversely associated with dietary nutrients and dietary fiber compared with the no-intake group of ramen. Sugar intake, Dorea as a short-chain fatty acid (SCFA)-producing gut microbiota, and γ-glutamyl transferase as a liver function marker were directly associated with ramen intake after adjustment for related factors including diets, gut microbiota, and blood chemistry using a stepwise logistic regression model, whereas Dorea is inconsistently less abundant in the ramen group. In conclusion, the increased ramen was associated with decreased gut bacterial diversity accompanying a perturbation of Dorea through the dietary nutrients, gut microbiota, and blood chemistry, while the methodological limitations existed in a cross-sectional study. People with frequent ramen eating habits need to take measures to consume various nutrients to maintain and improve their health, and dietary management can be applied to the dietary feature in ramen consumption.

6.
Cell Commun Signal ; 21(1): 219, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612584

RESUMEN

BACKGROUND: Megakaryocytes (MKs) are platelet precursors, which arise from hematopoietic stem cells (HSCs). While MK lineage commitment and differentiation are accompanied by changes in gene expression, many factors that modulate megakaryopoiesis remain to be uncovered. Replication initiation determinant protein (RepID) which has multiple histone-code reader including bromodomain, cryptic Tudor domain and WD40 domains and Cullin 4-RING E3 ubiquitin ligase complex (CRL4) recruited to chromatin mediated by RepID have potential roles in gene expression changes via epigenetic regulations. We aimed to investigate whether RepID-CRL4 participates in transcriptional changes required for MK differentiation. METHODS: The PCR array was performed using cDNAs derived from RepID-proficient or RepID-deficient K562 erythroleukemia cell lines. Correlation between RepID and DAB2 expression was examined in the Cancer Cell Line Encyclopedia (CCLE) through the CellMinerCDB portal. The acceleration of MK differentiation in RepID-deficient K562 cells was determined by estimating cell sizes as well as counting multinucleated cells known as MK phenotypes, and by qRT-PCR analysis to validate transcripts of MK markers using phorbol 12-myristate 13-acetate (PMA)-mediated MK differentiation condition. Interaction between CRL4 and histone methylation modifying enzymes were investigated using BioGRID database, immunoprecipitation and proximity ligation assay. Alterations of expression and chromatin binding affinities of RepID, CRL4 and histone methylation modifying enzymes were investigated using subcellular fractionation followed by immunoblotting. RepID-CRL4-JARID1A-based epigenetic changes on DAB2 promoter were analyzed by chromatin-immunoprecipitation and qPCR analysis. RESULTS: RepID-deficient K562 cells highly expressing MK markers showed accelerated MKs differentiation exhibiting increases in cell size, lobulated nuclei together with reaching maximum levels of MK marker expression earlier than RepID-proficient K562 cells. Recovery of WD40 domain-containing RepID constructs in RepID-deficient background repressed DAB2 expression. CRL4A formed complex with histone H3K4 demethylase JARID1A in soluble nucleus and loaded to the DAB2 promoter in a RepID-dependent manner during proliferation condition. RepID, CRL4A, and JARID1A were dissociated from the chromatin during MK differentiation, leading to euchromatinization of the DAB2 promoter. CONCLUSION: This study uncovered a role for the RepID-CRL4A-JARID1A pathway in the regulation of gene expression for MK differentiation, which can form the basis for the new therapeutic approaches to induce platelet production. Video Abstract.


Asunto(s)
Núcleo Celular , Histonas , Proteínas de Ciclo Celular , Diferenciación Celular , Cromatina , Dominio Tudor
7.
Front Sports Act Living ; 5: 1219345, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37521099

RESUMEN

Introduction: The gut microbiome plays a fundamental role in host homeostasis through regulating immune functions, enzyme activity, and hormone secretion. Exercise is associated with changes in gut microbiome composition and function. However, few studies have investigated the gut microbiome during training periodization. The present study aimed to investigate the relationship between training periodization and the gut microbiome in elite athletes. Methods: In total, 84 elite athletes participated in the cross-sectional study; and gut microbiome was determined during their transition or preparation season period. Further, 10 short-track speed skate athletes participated in the longitudinal study, which assessed the gut microbiome and physical fitness such as aerobic capacity and anaerobic power in the general and specific preparation phase of training periodization. The gut microbiome was analyzed using 16S rRNA sequencing. Results: The cross-sectional study revealed significant differences in Prevotella, Bifidobacterium, Parabacteroides, and Alistipes genera and in enterotype distribution between transition and preparation season phase periodization. In the longitudinal study, training phase periodization altered the level of Bacteroides, Blautia, and Bifidobacterium in the microbiome. Such changes in the microbiome were significantly correlated with alternations in aerobic capacity and tended to correlate with the anaerobic power. Discussion: These findings suggest that periodization alters the gut microbiome abundance related to energy metabolism and trainability of physical fitness. Athlete's condition may thus be mediated to some extent by the microbiota in the intestinal environment.

8.
Pulm Circ ; 13(3): e12266, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37448440

RESUMEN

This study investigated the effects of partially hydrolyzed guar gum (PHGG) on the development of pulmonary arterial hypertension using a SU5416/hypoxia rat model. Our results demonstrated that PHGG treatment suppressed the development of pulmonary hypertension and vascular remodeling with an altered gut microbiota composition.

9.
Res Sq ; 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37461562

RESUMEN

Background Megakaryocytes (MKs) are platelet precursors, which arise from hematopoietic stem cells (HSCs). While MK lineage commitment and differentiation are accompanied by changes in gene expression, many factors that modulate megakaryopoiesis remain to be uncovered. Replication origin binding protein (RepID) which has multiple histone-code reader including bromodomain, cryptic Tudor domain and WD40 domains and Cullin 4-RING ubiquitin ligase complex (CRL4) recruited to chromatin mediated by RepID have potential roles in gene expression changes via epigenetic regulations. We aimed to investigate whether RepID-CRL4 participates in transcriptional changes required for MK differentiation. Methods The PCR array was performed using cDNAs derived from RepID-proficient or RepID-deficient K562 erythroleukemia cell lines. Correlation between RepID and DAB2 expression was examined in the Cancer Cell Line Encyclopedia (CCLE) through the CellMinerCDB portal. The acceleration of MK differentiation in RepID-deficient K562 cells was determined by estimating cell sizes as well as counting multinucleated cells known as MK phenotypes, and by qRT-PCR analysis to validate transcripts of MK markers using phorbol 12-myristate 13-acetate (PMA)-mediated MK differentiation condition. Interaction between CRL4 and histone methylation modifying enzymes were investigated using BioGRID database, immunoprecipitation and proximity ligation assay. Alterations of expression and chromatin binding affinities of RepID, CRL4 and histone methylation modifying enzymes were investigated using subcellular fractionation followed by immunoblotting. RepID-CRL4-JARID1A-based epigenetic changes on DAB2 promoter were analyzed by chromatin-immunoprecipitation and qPCR analysis. Results RepID-deficient K562 cells highly expressing MK markers showed accelerated MKs differentiation exhibiting increases in cell size, lobulated nuclei together with reaching maximum levels of MK marker expression earlier than RepID-proficient K562 cells. Recovery of WD40 domain-containing RepID constructs in RepID-deficient background repressed DAB2 expression. CRL4A formed complex with histone H3K4 demethylase JARID1A in soluble nucleus and loaded to the DAB2 promoter in a RepID-dependent manner during proliferation condition. RepID, CRL4A, and JARID1A were dissociated from the chromatin during MK differentiation, leading to euchromatinization of the DAB2 promoter. Conclusion This study uncovered a role for the RepID-CRL4A-JARID1A pathway in the regulation of gene expression for MK differentiation, which can form the basis for the new therapeutic approaches to induce platelet production.

10.
Microorganisms ; 11(5)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37317220

RESUMEN

BACKGROUND: Barley, a grain rich in soluble dietary fiber ß-glucan, is expected to lower blood pressure. Conversely, individual differences in its effects on the host might be an issue, and gut bacterial composition may be a determinant. METHODS: Using data from a cross-sectional study, we examined whether the gut bacterial composition could explain the classification of a population with hypertension risks despite their high barley consumption. Participants with high barley intake and no occurrence of hypertension were defined as "responders" (n = 26), whereas participants with high barley intake and hypertension risks were defined as "non-responders" (n = 39). RESULTS: 16S rRNA gene sequencing revealed that feces from the responders presented higher levels of Faecalibacterium, Ruminococcaceae UCG-013, Lachnospira, and Subdoligranulum and lower levels of Lachnoclostridium and Prevotella 9 than that from non-responders. We further created a machine-learning responder classification model using random forest based on gut bacteria with an area under the curve value of 0.75 for estimating the effect of barley on the development of hypertension. CONCLUSIONS: Our findings establish a link between the gut bacteria characteristics and the predicted control of blood pressure provided by barley intake, thereby providing a framework for the future development of personalized dietary strategies.

11.
Sensors (Basel) ; 23(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37050628

RESUMEN

Memory isolation is an essential technology for safeguarding the resources of lightweight embedded systems. This technique isolates system resources by constraining the scope of the processor's accessible memory into distinct units known as domains. Despite the security offered by this approach, the Memory Protection Unit (MPU), the most common memory isolation method provided in most lightweight systems, incurs overheads during domain switching due to the privilege level intervention. However, as IoT environments become increasingly interconnected and more resources become required for protection, the significant overhead associated with domain switching under this constraint is expected to be crucial, making it harder to operate with more granular domains. To mitigate these issues, we propose DEMIX, which supports efficient memory isolation for multiple domains. DEMIX comprises two mainelements-Domain-Enforced Memory Isolation and instruction-level domain isolation-with the primary idea of enabling granular access control for memory by validating the domain state of the processor and the executed instructions. By achieving fine-grained validation of memory regions, our technique safely extends the supported domain capabilities of existing technologies while eliminating the overhead associated with switching between domains. Our implementation of eight user domains shows that our approach yields a hardware overhead of a slight 8% in Ibex Core, a very lightweight RISC-V processor.

12.
Biochem Biophys Res Commun ; 636(Pt 2): 71-78, 2022 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-36368157

RESUMEN

Cullin-RING ubiquitin E3 ligase (CRLs) composed of four components including cullin scaffolds, adaptors, substrate receptors, and RING proteins mediates the ubiquitination of approximately 20% of cellular proteins that are involved in numerous biological processes. While CRLs deregulation contributes to the pathogenesis of many diseases, including cancer, how CRLs deregulation occurs is yet to be fully investigated. Here, we demonstrate that components of CRL3 and its transcriptional regulators are possible prognosis marker of neuroendocrine (NE) cancer. Analysis of Cancer Cell Line Encyclopedia (CCLE) through the CellMinerCDB portal revealed that expression of CRL3 scaffold Cullin 3 (CUL3) highly correlates with NE signature, and CUL3 silencing inhibited NE cancer proliferation. Moreover, subset of 151 BTB (Bric-a-brac, Tramtrack, Broad complex) domain-containing proteins that have dual roles as substrate receptors and adaptor subunits in CRL3, as well as the expression of transcription factors (TFs) that control the transcription of BTB genes were upregulated in NE cancer. Analysis using published ChIP-sequencing data in small cell lung cancer (SCLC), including NE or non-NE SCLC verified that gene promoter of candidates which show high correlation with NE signature enriched H3K27Ac. These observations suggest that CRL3 is a master regulator of NE cancer and knowledge of specifically regulated CRL3 genes in NE cancer may accelerate new therapeutic approaches.


Asunto(s)
Carcinoma Neuroendocrino , Proteínas Cullin , Ubiquitina-Proteína Ligasas , Humanos , Proteínas Portadoras/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
13.
Microorganisms ; 10(11)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36363762

RESUMEN

Dietary plant lignans are converted inside the gut to enterolignans enterodiol (ED) and enterolactone (EL), which have several biological functions, and health benefits. In this study, we characterized the gut microbiome composition associated with enterolignan production using data from a cross-sectional study in the Japanese population. We identified enterolignan producers by measuring ED and EL levels in subject's serum using liquid chromatography-tandem mass spectrometry. Enterolignan producers show more abundant proportion of Ruminococcaceae and Lachnospiraceae than non-enterolignan producers. In particular, subjects with EL in their serum had a highly diverse gut microbiome that was rich in Ruminococcaceae and Rikenellaceae. Moreover, we built a random forest classification model to classify subjects to either EL producers or not using three characteristic bacteria. In conclusion, our analysis revealed the composition of gut microbiome that is associated with lignan metabolism. We also confirmed that it can be used to classify the microbiome ability to metabolize lignan using machine learning approach.

14.
Healthcare (Basel) ; 10(10)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36292551

RESUMEN

The COVID-19 pandemic has resulted in an increase in depression among college students due to anxiety and fear of infection. Nonetheless, COVID-19 infection prevention measures should be actively implemented. In this study, the mediating effect of health belief on the relationship between depression and infection prevention behavior was investigated. A survey of 220 South Korean college students was conducted. Depression was found to be the independent variable, health belief the mediating variable, and infection prevention behavior the dependent variable. The model fit index according to confirmatory factor analysis was found to be suitable. Depression among college students was not directly related to COVID-19 infection prevention behavior; however, depression was confirmed to be related to infection prevention behavior via the mediation of health belief. Arbitration measures, focusing on perceived severity and susceptibility during health belief, are required.

15.
Diagnostics (Basel) ; 12(9)2022 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-36140550

RESUMEN

In this study, a deep learning model (deepPLM) is shown to automatically detect periodic limb movement syndrome (PLMS) based on electrocardiogram (ECG) signals. The designed deepPLM model consists of four 1D convolutional layers, two long short-term memory units, and a fully connected layer. The Osteoporotic Fractures in Men sleep (MrOS) study dataset was used to construct the model, including training, validating, and testing the model. A single-lead ECG signal of the polysomnographic recording was used for each of the 52 subjects (26 controls and 26 patients) in the MrOS dataset. The ECG signal was normalized and segmented (10 s duration), and it was divided into a training set (66,560 episodes), a validation set (16,640 episodes), and a test set (20,800 episodes). The performance evaluation of the deepPLM model resulted in an F1-score of 92.0%, a precision score of 90.0%, and a recall score of 93.0% for the control set, and 92.0%, 93.0%, and 90.0%, respectively, for the patient set. The results demonstrate the possibility of automatic PLMS detection in patients by using the deepPLM model based on a single-lead ECG. This could be an alternative method for PLMS screening and a helpful tool for home healthcare services for the elderly population.

16.
J Med Syst ; 46(10): 68, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36100792

RESUMEN

A prediction algorithm for hypoglycemic events is proposed using glucose levels and electrocardiogram (ECG) with support vector machine (SVM). We extracted the corrected QT interval and five heart rate variability parameters from the ECG, along with glucose level from a continuous glucose monitoring system (CGMS). This feature set is used as input to the SVM, and hypoglycemic events are predicted every 5 min using the trained SVM model for up to 30 min in advance. The proposed algorithm was developed and evaluated for nine Type-1 diabetes patients in the D1NAMO dataset. The prediction sensitivity, specificity, and accuracy values for the test set were 91.1%, 87.0%, and 89.0% (10 min before); 88.0%, 84.3%, and 86.2% (20 min before); 80.1%, 83.3%, and 81.7% (30 min before), respectively. These results show higher performance of the proposed method compared to previous studies and suggest the possibility of predicting hypoglycemia in advance.


Asunto(s)
Hipoglucemia , Máquina de Vectores de Soporte , Algoritmos , Glucemia , Automonitorización de la Glucosa Sanguínea , Electrocardiografía/métodos , Humanos , Hipoglucemia/diagnóstico , Hipoglucemiantes
17.
Nat Commun ; 13(1): 4477, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35982037

RESUMEN

The gut microbiome is an important determinant in various diseases. Here we perform a cross-sectional study of Japanese adults and identify the Blautia genus, especially B. wexlerae, as a commensal bacterium that is inversely correlated with obesity and type 2 diabetes mellitus. Oral administration of B. wexlerae to mice induce metabolic changes and anti-inflammatory effects that decrease both high-fat diet-induced obesity and diabetes. The beneficial effects of B. wexlerae are correlated with unique amino-acid metabolism to produce S-adenosylmethionine, acetylcholine, and L-ornithine and carbohydrate metabolism resulting in the accumulation of amylopectin and production of succinate, lactate, and acetate, with simultaneous modification of the gut bacterial composition. These findings reveal unique regulatory pathways of host and microbial metabolism that may provide novel strategies in preventive and therapeutic approaches for metabolic disorders.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Clostridiales , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Obesidad , Acetilcolina , Administración Oral , Adulto , Amilopectina , Animales , Clostridiales/metabolismo , Estudios Transversales , Diabetes Mellitus Tipo 2/microbiología , Diabetes Mellitus Tipo 2/terapia , Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal/fisiología , Humanos , Japón , Ratones , Ratones Endogámicos C57BL , Obesidad/microbiología , Obesidad/terapia , Ornitina , Simbiosis
18.
Food Sci Anim Resour ; 42(4): 609-624, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35855272

RESUMEN

Tenebrio molitor larvae, as known as edible insects, has advantages of being rich in protein, and has been recognized as a suitable alternate protein source for broiler and pig feed. Moreover, given their ability to biodegrade polystyrene, a major pollutant, Tenebrio molitor larvae has been proposed as an innovative solution to environmental problems. In the present study, we investigated the toxicity of Tenebrio molitor larvae powder (TMlp) ingested with expanded-polystyrene (W/ eps) through in vitro and in vivo experiments. The objective of this study was to determine whether TMlp W/ eps can be applied as livestock alternative protein source. For in vitro experiments, cytotoxicity test was performed to investigate the effects of TMlp-extract on the viability of estrogen-dependent MCF-7 cells. The possibility of estrogen response was investigated in two groups: Expanded-polystyrene-fed (W/ eps) TMlp group and without expanded-polystyrene-fed (W/o eps) TMlp group. For in vivo experiments, The male Sprague-Dawley rats were divided based on the dosage of TMlp administered and oral administration was performed to every day for 5 weeks. A toxicological assessments were performed, which included clinical signs, food consumption, body and organ weights, hematology, serum chemistry, and hematoxylin and eosin staining of liver and kidney. There were no specific adverse effect of TMlp W/ eps-related findings under the experimental conditions of this study, but further studies on both sexes and animal species differences should be investigated. In conclusion, TMlp W/ eps was considered non-toxic and observed to be applicable as an alternative protein source for livestock feed.

19.
Nutrients ; 14(10)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35631219

RESUMEN

The gut microbiota is closely related to good health; thus, there have been extensive efforts dedicated to improving health by controlling the gut microbial environment. Probiotics and prebiotics are being developed to support a healthier intestinal environment. However, much work remains to be performed to provide effective solutions to overcome individual differences in the gut microbial community. This study examined the importance of nutrients, other than dietary fiber, on the survival of gut bacteria in high-health-conscious populations. We found that vitamin B1, which is an essential nutrient for humans, had a significant effect on the survival and competition of bacteria in the symbiotic gut microbiota. In particular, sufficient dietary vitamin B1 intake affects the relative abundance of Ruminococcaceae, and these bacteria have proven to require dietary vitamin B1 because they lack the de novo vitamin B1 synthetic pathway. Moreover, we demonstrated that vitamin B1 is involved in the production of butyrate, along with the amount of acetate in the intestinal environment. We established the causality of possible associations and obtained mechanical insight, through in vivo murine experiments and in silico pathway analyses. These findings serve as a reference to support the development of methods to establish optimal intestinal environment conditions for healthy lifestyles.


Asunto(s)
Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Animales , Bacterias/metabolismo , Dieta , Fibras de la Dieta , Ácidos Grasos Volátiles/metabolismo , Humanos , Ratones , Tiamina
20.
Diagnostics (Basel) ; 12(5)2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35626390

RESUMEN

BACKGROUND: Sleep stage scoring, which is an essential step in the quantitative analysis of sleep monitoring, relies on human experts and is therefore subjective and time-consuming; thus, an easy and accurate method is needed for the automatic scoring of sleep stages. METHODS: In this study, we constructed a deep convolutional recurrent (DCR) model for the automatic scoring of sleep stages based on a raw single-lead electrocardiogram (ECG). The DCR model uses deep convolutional and recurrent neural networks to apply the complex and cyclic rhythms of human sleep. It consists of three convolutional and two recurrent layers and is optimized by dropout and batch normalization. The constructed DCR model was evaluated using multiclass classification, including five-class sleep stages (wake, N1, N2, N3, and rapid eye movement (REM)) and three-class sleep stages (wake, non-REM (NREM), and REM), using a raw single-lead ECG signal. The single-lead ECG signal was collected from 112 subjects in two groups: control (52 subjects) and sleep apnea (60 subjects). The single-lead ECG signal was preprocessed, segmented at a duration of 30 s, and divided into a training set of 89 subjects and test set of 23 subjects. RESULTS: We achieved an overall accuracy of 74.2% for five classes and 86.4% for three classes. CONCLUSIONS: These results show the DCR model's superior performance over those in the previous studies, highlighting that the model can be an alternative tool for sleep monitoring and sleep screening.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...